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Abstract

Small-scale faults with associated drag folds in brittle-ductile rocks can retain detailed information on the kinematics and amount of defor-
mation the host rock experienced. Measured fault orientation (a), drag angle (b) and the ratio of the thickness of deflected layers at the fault (L)
and further away (T ) can be compared with a, b and L/T values that are calculated with a simple analytical model. Using graphs or a numerical
best-fit routine, one can then determine the kinematic vorticity number and initial fault orientation that best fits the data. The proposed method
was successfully tested on both analogue experiments and numerical simulations with BASIL. Using this method, a kinematic vorticity number
of one (dextral simple shear) and a minimum finite strain of 2.5e3.8 was obtained for a population of antithetic faults with associated drag folds
in a case study area at Mas Rabassers de Dalt on Cap de Creus in the Variscan of the easternmost Pyrenees, Spain.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the aims of structural geology is to determine and
quantify the amount and type of deformation that rocks expe-
rienced. For this structural geologist use a variety of structures
that record deformation, such as folds, boudins, veins, etc.
(e.g. Ramsay and Huber, 1983). In this paper we propose
a new method to determine finite strain and the kinematics
of deformation using isolated, discrete small-scale faults and
their associated drag folds.

Slip along a fault will cause heterogeneous deformation in
the vicinity of the fault. Drag folds are the usual result in
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foliated rocks. Recently, much attention has been given to
small-scale faults and their associated drag folds in mostly
ductile rocks (Passchier, 2001; Grasemann and Stüwe, 2001;
Grasemann et al., 2003; Exner et al., 2004; Grasemann
et al., 2005; Wiesmayr and Grasemann, 2005; Coelho et al.,
2005; Kocher and Mancktelow, 2006). In the modern litera-
ture, these structures were first described by Gayer et al.
(1978) and Hudleston (1989). These structures were later
dubbed ‘‘flanking folds’’ or ‘‘flanking structures’’ by Passchier
(2001), who used this term for a variety of structures apart
from fault-related drag folds. Instead of this new terminology,
we prefer to use well-known and long-used terms: faults and
drag folds.

The aforementioned authors described a range of drag fold
structures and proposed a number of classification schemes.
Basically, an isolated fault with its associated drag folds falls
into one of four categories by the combination of two
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parameters: fault movement is antithetic (a-type of Grase-
mann et al., 2003) or synthetic (s-type) with regard to the
far-field sense of shear, and drag folds are normal or reverse
with regard to the slip along the fault. Of these four, the an-
tithetic reverse-drag category is the most common for isolated
faults. The fact that reverse drag is common is to be expected
for isolated faults in an otherwise homogeneously deforming
medium. A straight foliation element (layering, cleavage) that
is cut by the fault will remain on a single straight plane away
from the fault, whereas close to the fault, it is bent by the fault
movement (Fig. 1a). Both synthetic and antithetic faults will
therefore initially develop reverse-drag folds. However, Exner
et al. (2004) showed that the slip direction may change at
a high strain and reverse drag folds then become normal
drag folds.

An isolated, discrete fault will typically develop drag folds
with a constant sign of curvature. In a ductile shear band (i.e.
minor shear zone) the foliation is not cut by a fault, but can be
traced continuously through the shear band (Fig. 1b). This im-
plies that there is an inflexion point where curvature changes
sign (Coelho et al., 2005). This produces shear-band type
structures in the terminology of Wiesmayr and Grasemann
(2005). However, these structures still exhibit the same reverse
or normal drag on a larger scale than the deflection caused by
the localised shearing within the shear band. These reverse-
drag folds can usually not be discerned when shear band spac-
ing is on the same scale as the reverse drag folds.

Despite the several field studies (Gayer et al., 1978;
Druguet et al., 1997; Harris, 2003), as well as numerical
(Grasemann and Stüwe, 2001; Grasemann et al., 2003, 2005;
Wiesmayr and Grasemann, 2005; Coelho et al., 2005; Kocher
and Mancktelow, 2006) and experimental simulations (Hu-
dleston, 1989; Odonne, 1990; Koyi and Skelton, 2001; Harris
et al., 2002; Exner et al., 2004; Kocher and Mancktelow, 2006)
of drag fold structures, so far only Kocher and Mancktelow
(2005) proposed a way to use these structures to quantify
the finite strain and kinematics of deformation. They em-
ployed the analytical solution of Schmid and Podladchikov
(2003) for the deformation field along an isolated fault that it-
self is passively deformed by the applied bulk flow. Their
method is essentially applying the reverse model strain field
to straighten out the foliation. Since bulk deformation kine-
matics and finite strain are not known a priori, a range of finite
strains and vorticities are applied and the one that best
straightens the foliation is chosen as the solution. The advan-
tage of the method is that a single structure can be used to de-
termine the vorticity of deformation, the finite strain since
formation of the fault, and the original orientation of the fault
relative to the foliation. A disadvantage is that appropriate
software is needed.

In this paper we propose a similar method to determine
these three parameters. The advantage of our proposed method
is that the method does not necessarily require a computer. In-
stead, charts can be used, which means the method can easily
be applied in the field. However, a more accurate determina-
tion can only be achieved numerically, as is described in this
paper. A disadvantage is that multiple fault-drag fold struc-
tures are needed at different stages of development (finite
strain since formation). This study is based on a population
of drag fold structures in deformed quartzites from Mas
Rabassers de Dalt on the Cap de Creus Peninsula in north-
eastern Spain (Fig. 2). These structures and their setting will
be described first to provide the background for the method
that is described in the subsequent sections.

2. Examples from the Rabassers quartzite

2.1. Regional setting of the Mas Rabassers de Dalt
locality

The Cap de Creus Peninsula is the easternmost outcrop of
the Variscan basement exposed along the Axial Zone of the
Fig. 1. Schematic illustration of the formation of reverse-drag folds adjacent to: (a) isolated faults; and (b) shear bands in a general shear field (Wk ¼ 0.64) that is

homogeneous far away from the fault/shear band. In case of a ductile shear band, normal drag is found within the shear band, in addition to reverse drag away from

the shear band. The same applies to antithetic movement (top) and to synthetic movement (bottom). Left column shows the geometry before deformation.
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Fig. 2. Drag fold structures in the banded quartzite at Mas Rabassers de Dalt, Cap de Creus, Spain. Sense of shear is top (east) to the right. (aed) Antithetic faults

with reverse-drag folds at different stages of development. (e) One of the rare synthetic faults. (f) Photograph and sketch showing that in the third dimension the

faults are straight and extend further than their length perpendicular to the banding. (g) Plane-polarised light micrograph of an antithetic fault. Variations in the

content of graphite and mica particles form the dark and light bands. (h) Same image in cross-polarised light. Quartz grain size is largest in clean quartz. All images

looking onto the surface perpendicular to the foliation and faults. Black scale bars 10 mm, white scale bars 0.5 mm, Ø of 5 V-cent coin is 21 mm.
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Pyrenees (Barnolas and Chiron, 1996; Carreras, 2001). The
dominant lithology in the area of interest near the ruin of Mas
Rabassers de Dalt (UTM 31N 0523100, 4685200, Fig. 3) is
a monotonous series of amphibolite-facies meta-turbidites
(Druguet, 1997, 2001). The rocks experienced multiple defor-
mation phases during the Variscan Orogeny (Druguet, 1997,
2001; Bons et al., 2004). Some quartzite beds, ranging from
a few tens of centimetres to a few metres in thickness, are
Fig. 3. Detailed map of the Mas Rabassers de Dalt Outcrop showing the refolded quartzite bed and the localities where the small-scale faults were found and

measured. The stereoplot summarizes the main structural information: poles to quartzite bedding (open dots) that lie on great circle (dashed line) defining the

D3 fold axis (closed dot) which lies on the great circle of the average D3 shear plane. The cross is the average D3 shear direction. Black arrows indicate sense

of D3 shear zones. (Based on Druguet, 1997).
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intercalated in the meta-turbidites. They form the only marker
horizons that can be traced over distances of up to a few hun-
dred metres. All the drag fold structures discussed in this paper
were found in one such bed, which has a distinct black-and-
white cm-scale banding (Fig. 2). The banding is layer-parallel
and therefore assumed to be original sedimentary layering.
The colour difference is a result of different amounts of graphite
and other impurities, which also results in a difference in grain
size between the layers (Fig. 2g,h). There are no indications for
any significant differences in rheological properties between
the dark and light bands (no cuspate-lobate structures, buckle
folds in specific layers, etc.).

Near Mas Rabassers de Dalt, the quartzite and S1 layer-par-
allel foliation (S01) are affected by two more folding events (D2

and D3), resulting in a complex exposure pattern (Druguet,
1997). Pegmatites that intruded during peak-metamorphic con-
ditions (Druguet and Hutton, 1998) are only affected by retro-
grade D3 folding and shearing. The regional trend of the S01

main foliation is NWeSE, when not affected by D3 shearing.
A broad zone of dextral NWeSE-trending D3 shearing rotated
S01 towards the NEeSW trend that dominates in the area
shown in Fig. 3. The curvature of the quartzite layer and the
S01 foliation is due to decametric folds predating the shearing
event that can be recognized from the structural map. Localisa-
tion of the shearing led to the formation of a number of nar-
rower (�10 m) shear zones with distinctly elevated shear
strain. Although the superposition of three deformation events
makes it difficult to interpret the map pattern at Mas Rabassers
de Dalt (Fig. 3), extensive mapping at the site and the region
has unambiguously established the dextral nature of the D3

shearing and associated folding (Carreras and Casas, 1987;
Carreras, 2001; Carreras et al., 2005; Fusseis et al., 2006).

2.2. Drag fold structures

The discrete faults with drag folds are mainly found in the
refolded quartzite bed. Within that bed they only occur in sec-
tions of the bed that run roughly parallel to the D3 shear zones.
This suggests that they formed during D3 dextral shearing and
not during earlier deformation events. Almost all (localities
AeF in Fig. 3) occur in the western limb of a D2-fold, of
which the hinge is skirted by one of the zones of most intense
localised shearing.

The drag folds form at cm-scale, steeply plunging faults,
best seen on gently dipping outcrop surfaces. Almost all
drag folds are reverse. Faults with the least offset relative to
their length are almost perpendicular to the banding in the
quartzite (Fig. 2a). More evolved structures make an increas-
ingly smaller angle with the banding, suggesting the structures
progressively rotated clockwise (Fig. 2ced). Fault tips can
rarely be discerned, as faults tend to bend in a listric form to
become parallel to the banding at both ends. Dextral layer-par-
allel slip is observed in a few rare cases where crosscutting
veins are offset. Clockwise rotation of the faults and layer-
parallel slip all indicate dextral shear. The faults are therefore
interpreted as antithetic faults. Synthetic faults (Fig. 2e) are
rare in the quartzite, and usually make a small angle with
the banding. In the third dimension, the small faults are re-
markably straight and may extend over more than a metre
(Fig. 2f). Even on the microscopic scale, the faults are discrete
planes with only a very narrow damage zone (Fig. 2g,h).

3. Method

The method described below is aimed at estimating the ki-
nematic vorticity number (Means et al., 1980) and finite strain
that the rock experienced using parameters of the drag fold
structures that can be measured easily. The following parame-
ters can be determined in the field (Fig. 4): the angle (a) be-
tween the fault and the far-field foliation, the drag angle (b)
between the foliation and the fault measured at the fault, pref-
erably in the middle of the fault, and finally the ratio between
the thickness of a marker layer at the fault, measured parallel
to the fault (L) at the fault, and perpendicular to the layer (T )
away from the fault. All parameters must be measured in the
plane perpendicular to the fault and foliation.

The first main assumption is that the fault acts as a passive,
straight marker line that is being rotated and stretched/short-
ened by the applied bulk flow. This assumption is validated
by both numerical and physical experiments (Grasemann and
Stüwe, 2001; Exner et al., 2004). Clearly, the four parameters
will evolve from their initial values (a0 ¼ b0 and L0/T0 ¼
1/sin(a0)), depending on the flow field relative to the initial
orientation of the fault and foliation. We need to know how
a, b and L/T evolve, as a function of progressive deformation
and initial conditions, to determine which initial conditions, ki-
nematics of flow and finite strain lead to the combinations of a,
b and L/T that were measured in the field. However, there may
not be a unique solution for any given single combination of a,
b and L/T. This brings us to the second main assumption for the
proposed method: during progressive deformation faults form
at different stages, but with the same initial orientation (a0).
At the end of deformation (the state observed in the field),

Fig. 4. Sketch showing a fault and drag fold in the undeformed (a); and

deformed (b) stage, with all the parameters that are required for the analysis.
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each fault experienced different amounts of deformation and is
therefore in a different state of development (Fig. 2aed). Anal-
ysis of several of such faults produces a number of different a,
b and L/T combinations. These measured combinations should
lie on a path in a, b and L/T space that is unique to the flow
kinematics and initial orientation of the faults.

The basic idea of our proposed method is that theoretical
paths for all flow kinematics and initial fault orientations
can be determined, and can then be compared with a, b and
L/T data sets that are measured in the field. The path that
best fits the data provides us with the flow kinematics and
the initial fault orientation. It also allows us to determine
which data point represents the highest strain, which gives
a minimum estimate of the finite strain. Comparison of theo-
retical paths and data can be done using charts or with a com-
puter program that carries out the best fit. The advantage of
using charts is that they can easily be employed in the field.

3.1. Theoretical a-b-L/T paths

The following analysis is based on the deformation at an
isolated single straight fault in an otherwise homogenously de-
forming medium. The fault is supposed to have a limited ex-
tent, so that the offset reduces to zero at both ends. We
consider a plane-strain case, with the fault oriented parallel
to the intermediate principal stretching direction. The problem
can therefore be regarded as two-dimensional. If deformation
is not plane strain, stretching or shortening in the third dimen-
sion would cause an area change in the section under consid-
eration, but no changes in the angles and other parameters that
are used below. We further consider an initially straight folia-
tion perpendicular to the section under consideration.

Similar to Kocher and Mancktelow (2005), we fix our ref-
erence frame to be parallel and perpendicular to the far-field
foliation orientation. The foliation is assumed to be parallel
to a direction of zero rotation and therefore parallel to one
of the flow eigenvectors or apophyses (Passchier, 1998; Ebner
and Grasemann, 2006). As in most studies, we assume that the
kinematics of strain do not change during deformation. The
bulk flow field is now given by the position gradient tensor F:

F¼
�

a g
0 1=a

�
; ð1Þ

where a is the amount of stretching, and g the amount of shear-
ing, both parallel to the foliation. Because of the definition of
the reference frame, the far field foliation does not rotate rel-
ative to the reference frame, but it may stretch or shorten if
a s 1. F is area-conservative because of our assumption of
plane-strain flow.

It is also assumed that the fault is frictionless, so that it can-
not support any shear stress. This implies that the material ad-
jacent to the fault stretches/shortens in pure shear parallel to
the fault. Rotation of the fault adds a spin to the deformation,
but deformation immediately adjacent to the fault plane re-
mains coaxial. The no-friction assumption is unlikely to be
completely valid in reality. However, our experiments and
numerical simulations below show that small deviations in
mechanical properties of the fault or shear zone do not notice-
ably change the outcome. Furthermore, the fault as a whole
behaves as a passive plane, or a line in 2D, and therefore
stretches and shortens according to the bulk flow field. We de-
fine e as the amount of stretch or longitudinal strain of the fault
(its finite length/original length). With these assumptions an
analytical solution exists for the evolution of a, b and L/T
for a layer that intersects the fault at its centre.

To determine the orientation of the fault with progressive
strain, we consider a unit vector parallel to the fault. This vec-
tor has initial coordinates [cos(a0), sin(a0)]. After deforma-
tion, and due to the application of the tensor F, the vector
will have new coordinates [a $ cos(a0) þ g $ sin(a0), (1/
a) $ sin(a0)]. The stretch (e), parallel to the fault, is the ratio
of the finite and original length of the unit vector:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða,cosða0Þ þ g,sinða0ÞÞ2þ

1

a2
sin2ða0Þ

r
: ð2Þ

The finite orientation (a) of the fault relative to foliation is:

a ¼ arctan

�
sinða0Þ

a2,cosða0Þ þ a,g,sinða0Þ

�
ð3Þ

As deformation progresses the foliation is reoriented at the
fault, describing a drag angle (b) between the foliation and the
fault plane. We use the assumption of a frictionless fault and
therefore pure shear parallel to the fault. The foliation at the
fault thus experiences a stretch (e) parallel to the fault, while
it passively rotates along with the fault. Stretching and rotation
determine the drag angle. A local position gradient (F0) tensor
can be defined in a coordinate system parallel to the fault:

F0 ¼
�

e 0
0 1=e

�
ð4Þ

A unit vector in this local coordinate system will change
from initial coordinates [cos(b0), sin(b0)] to new coordinates
[e $ cos(b0), (1/e) $ sin(b0)]. The angle (b) between foliation
at the fault and that fault will then be (using a0 ¼ b0):

b ¼ arctan

�
sinðb0Þ

e2,cosðb0Þ

�
¼ arctan

�
sinða0Þ

e2,cosða0Þ

�
ð5Þ

The reference layer should intersect the fault just at the cen-
tre of it, where the maximum displacement can be found.
Away from the fault the finite thickness (T ) of that layer is
a function of the bulk finite strain and its original thickness
(T0):

T ¼ T0

a
: ð6Þ

The initial fault-parallel thickness (L0) is:

L0 ¼
T0

sinða0Þ
: ð7Þ
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This line L0 gets stretched by the same amount (e) as the fault,
so its length after deformation will be:

L¼ e,L0 ¼
e,T0

sinða0Þ
: ð8Þ

As the absolute dimensions are irrelevant for the geometry of
the system, we combine Eqs. (7) and (8) to obtain the ratio L/T:

L=T ¼ e,T0

sinða0Þ
a

T0

¼ e,a

sinða0Þ
: ð9Þ

We now have the three measurable parameters a, b and L/T
as a function of the unknown variables a0, a, and g. Although
the combination of a and g defines the amount of finite strain
and the kinematics of strain, it may be more useful to use the
two variables finite strain ration (Rf) and angle between the
two flow apophyses on the vorticity-normal section (u) or ki-
nematic vorticity number (Wk). Rf is the axial ratio of the fi-
nite strain ellipse and u the angle between the flow apophyses,
with:

u¼ arctan

�
a� 1=a

g

�
; Wk¼ cosðuÞ ð10Þ

and

Rf ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þ 1

4
ð1=aþ aÞ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þ ða� 1=aÞ2

q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þ 1

4
ð1=aþ aÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þ ða� 1=aÞ2

q ð11Þ

u can range from 0� for simple shear (Wk ¼ 1) to þ90� for
pure shear (Wk ¼ 0) stretching parallel to the foliation, or
�90� for pure shear shortening parallel to the foliation.

With the above equations, curves of a and L/T as a function
of b are shown for different vorticities and starting orientation
of the fault (Fig. 5).

3.2. Determining vorticity and initial fault angle
with charts

To determine the vorticity (u) and initial fault orientation
(a0), a, b and L/T need to be measured on a population of
faults with drag folds. Such data can be measured in the field
or from pictures. The plane of observation should be perpen-
dicular to both fault and foliation. If not, the apparent values
should be corrected to get the true values. The data should
be collected as close as possible to the middle of the fault,
so that Eq. (2) holds for the stretching of the material imme-
diately adjacent to the fault. It should also be noted that these
equations can be only used when the fault is discrete. In case
of a narrow ductile shear band, the angle b would be modified
due to shearing of the foliation in the narrow zone (Fig. 1b).

Applying the above equations, several unique graphs for the
evolution of a, b and L/T can be plotted for progressive strain,
for a certain starting orientation of the fault (a0) and a certain
kinematic vorticity number (Wk) (Fig. 5). Charts covering the
full range of u from �90 to þ90� and a0 from 0 to 180� are
provided in the appendix. We assume that all the shear bands
start off at different times, but with a similar orientation.
Each fault then represents a different stage of development.
The data can be plotted in each of the graphs of Fig. 5. Ideally,
all data should plot on a single curve that represents the evolu-
tion of a fault system with a certain a0 and u. The fault that ex-
perienced the least strain should lie closest to the estimated
initial fault angle (a0). The total amount of strain can be esti-
mated from that for the most developed fault system. This is,
of course, a minimum estimate, because even the most devel-
oped, oldest fault that is found must not necessarily have
experienced the total finite strain of the host rock. The pair
of curves in Fig. 5 that best fits the eight measurements is the
one for u ¼ 0� (simple shear) and a0 is 70�e80�. The highest
strain the rock experienced is estimated to be between Rf ¼ 8
and 16, which corresponds to a dextral shear strain of 2.5e3.8.

Fig. 5 shows that the curves for different a0 and u are dis-
tinct, as long as a0 is larger than about 40�. This means that
the method is only applicable to faults that started off at
a high angle to the foliation.

3.3. Numerical implementation of the method

Finding the curve that best fits the data can also be done nu-
merically, using a least-squares approach. A small program
that does the curve fitting was written in the language ‘‘C’’
(source code can be obtained from the authors). Input is
a text file containing a list of a, b and L/T data. The program
cycles through all possible kinematic vorticity numbers (�1 to
þ1) and a0 angles (0e180�), each with increments of 1�. For
each u and a0 combination, the program then calculates the
a-b-L/T curve for progressive strain, increasing strain in small
increments. For each strain increment and each i-th data point,
the difference Di between the theoretical and measured a, b,
L/T values is calculated:

Diða0;u;Rf Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðac� aiÞ2þðbc� biÞ2þwðL=Tc� L=TiÞ2

q
: ð12Þ

Here the subscript c stands for theoretical values and i for
measured data. Because the range of L/T values differs from
that of the angles a and b, L/T data may be given a different
weighting (w) for the least-squares best fit. For a given u

and a0 combination, the sum (SDi) of the smallest Di-value
for each data point is a measure of how well that u and a0

combination fits the data. The u and a0 combination with
the lowest SDi is regarded as the best estimate of u and a0.
Once a best estimate for u and a0 is found, one can estimate
the amount of strain that each analysed fault experienced by
finding the strain that minimises Di, using Eq. (12).

4. Validation of the method

4.1. Introduction

In order to ascertain the validity of the method, it has been
tested on several analogue and numerical experiments with dif-
ferent initial fault angles and different boundary conditions.
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Fig. 5. Curves of a and L/T as a function of b for different vorticities and starting orientations of the fault. This chart can be used to estimate Rf, vorticity and initial

fault angle in the field. Insets show the Mohr-circle for stretch for an Rf-value of 4. Eight data points from Rabassers de Dalt are plotted in each of the graphs. The

pair of curves that best fits these data is the one for u ¼ 0� (simple shear) and a0 is between 70� and 80�. The highest strain the rock experienced is estimated to be

between Rf ¼ 8e16 (shear strain is 2.5e3.8).
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First, the method has been applied to a simple shear analogue
model from Exner et al. (2004) and later to a pure shear exper-
iment of our own. We also ran a series of numerical experiments
with a variety of initial angles and vorticities, ranging from pure

Fig. 6. Progressive development of a reverse a-type flanking fold (modified

from Exner et al., 2004).
to simple shear. In all cases, we measured a, b and L/T of a sin-
gle drag fold structure at different stages of its development,
and applied the least-squares best-fit routine to the data.

4.2. Validation on a simple shear analogue experiment

Exner et al. (2004) studied drag fold structures at a fault in
a deforming a homogeneous, linear viscous matrix material
(PDMS) in a ring shear rig. Each of their models started
with a predefined fault, lubricated using liquid soap and sili-
cone oil. They tracked the offset and deflection of foliation
around the fault using a marker grid. We used published im-
ages of one experiment for a0 ¼ 90� according to the authors
(Fig. 6, after their Fig. 6). It should be noted that the actual
starting angle in that experiment was slightly less, about
87�. The fault initially has antithetic slip and develops reverse
drag folds. At a shear strain of 2.3, the fault has rotated 67�

and slip reverses to become synthetic. In the terminology of
Grasemann et al. (2003) the system evolves from a reverse-
drag a-type, to a normal-drag s-type flanking fold.

Nine groups of data (a, b, L/T ) were measured from the fig-
ures of Exner et al. (2004) up to a shear strain of 1.8, where the
finite offset along the fault is still antithetic. With our analysis
(Fig. 7) we obtained an estimated initial fault angle of 85�

(true value 87�) and an angle between flow apophyses of
u ¼ 3� or Wk ¼ 1.00 (true value 0� and 1.00 respectively).

4.3. Validation on pure shear analogue experiments

To test the method on a pure shear case, we used the defor-
mation apparatus described by Carreras and Ortu~no (1990) and
Druguet and Carreras (2006). The deforming medium was soft
commercially available plasticine. This material has been char-
acterized as non-linear elasto-viscous with a stress exponent of
3, an effective viscosity h w 4 $ 107 Pa $ s at the experimental
conditions, a density r of 1.15 $ 103 kg/m3, and shear modulus
G w 105 Pa (Gomez-Rivas, 2005). The model had initial di-
mensions of 29 � 15 � 10 cm and was deformed in pure shear
at a temperature of 26 �C and at a strain rate of 4 $ 10�5 s�1.
Fig. 7. Curves of a, b and L/T for simple shear and a starting orientation of the fault of 85�, which best fit the data measured from the experiment of Exner et al.

(2004).
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Since tests with a lubricated cut, as used by Exner et al. (2004),
failed, we simulated the fault with a lenticular fracture that was
filled with much softer PDMS (Fig. 8). The fault was initially
oriented 60� to the extension direction. A 5 mm grid was drawn
on the surface of the plasticine. Plane-strain pure-shear defor-
mation was applied by moving the sides of the sample, while
keeping the sample thickness constant at 10 cm.

Shortening lead to a rotation of the fault and the develop-
ment of reverse-drag folds. The soft PDMS was squeezed to-
wards the tips of the fault, where wing cracks developed.
Despite these developments, our analysis of six data groups,

Fig. 8. Initial and final stage of a pure shear analogue model showing the evo-

lution of an pre-existing fault (a PDMS-filled lens) and its associated drag

folds. The side of each square is 0.5 cm wide.
measured every 10% shortening, gave a good estimate of the-
vorticity (89� instead of 90�) and initial fault angle (59�

instead of 60�) (Fig. 9).

4.4. Validation on finite element numerical simulations

As shown above, our proposed method appears to work
well for ideal pure and simple shear deformation. Unfortu-
nately, experimental data were not available for general shear.
We therefore conducted a series of finite element models to
test the method for a range of vorticities and initial fault an-
gles. For the numerical simulations we used the code BASIL
(Barr and Houseman, 1996) that is linked to the modelling
platform Elle (Jessell et al., 2001).

The models were two-dimensional and consisted of a square
containing a narrow ellipse in the centre (Fig. 10). The host
rock was simulated with a homogeneous isotropic linear
viscous material with a viscosity (h) of one. A single layer
of viscosity 1.1 represented the foliation in the host rock.
Like Grasemann et al. (2003) we simulated the fault in the
centre of each model with a narrow ellipse with a viscosity
of 0.01. Two types of initial geometries were considered,
with the ellipse oriented at 45� and 75� to the foliation, respec-
tively. These two models were deformed under different veloc-
ity boundary conditions, from simple to pure shear, varying
the angle between flow apophyses (u) by 30� (Table 1). The
grid was generated with a self-meshing routine using Delau-
ney triangles with a minimum angle of 10�.

At least 6 groups of data (a, b, L/T ) were measured at dif-
ferent finite strain from each simulation, and analyzed to deter-
mine the vorticity and initial fault angle. The difference
between true and estimated values are plotted in Fig. 11,
and listed in Table 1. Differences in Wk ranges from 0 to
0.1 at the most, and estimated initial fault angles are within
7� of the true values.

Summarizing, in all tests the results from the analysis
closely match the known true values of the physical and nu-
merical experiments, allowing us to apply the method to nat-
urally deformed rocks with confidence.
Fig. 9. Curves of a, b and L/T for pure shear and a starting orientation of the fault of 59�. The measured data points of our experiment fit precisely to the calculated

curves.
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Fig. 10. (a) Initial configuration in finite element simulations with BASIL for an initial fault angle of 75�. (b) Geometry at the end of a simulation for Wk ¼ 0.5 at

a finite strain of Rf ¼ 2.6.
5. Strain analysis applied to the Mas Rabassers de Dalt
outcrop

A total of 29 small antithetic faults in the quartzite layer at
Mas Rabassers de Dalt (Fig. 3) were analyzed to estimate the
deformation experienced by this rock. The finite fault orienta-
tions ranged from a ¼ 10 to 64� (Table 2). The data were pro-
cessed with the software described in Section 3.3. The results
showed an initial fault angle (a0) of 78� and an angle between
flow apophyses (u) of 3�, which gives a bulk kinematic vortic-
ity number (Wk) of 1.00 (dextral simple shear; Fig. 12). The
highest strain was recorded by fault structure number 5 (at lo-
cality C in Fig. 3) with a finite strain of about Rf ¼ 8e16,
which is equivalent to a shear strain of about 2.5e3.8.

The dextral simple shear inferred from this analysis is con-
sistent with the field observations: the quartzite layer is ori-
ented parallel to the zone of highest D3 shear strain. Only
one small fault (locality F) was found away from the main
shear zone, but this one, with a high angle of a ¼ 54� to the
foliation, experienced less finite shear strain.

The available data set it is large enough to test the precision
of the method. This was done by randomly selecting subsets of
5, 9, 13, 17, 21 and 25 data and using these subsets to determine
vorticity and initial fault angle. Ten different random subsets
were processed for each size of the subset. Fig. 13 shows that
even very small datasets (5e9 data) already give approximately
the right solution. It should also be noted that least-squares best
fit using 29 data points (measured by EGR) produced almost
identical results to that using the graphs (Fig. 5) on only eight

Table 1

True and calculated values of bulk kinematic vorticity number (Wk) and initial

fault angle (a0) for eight finite element simulations, showing that errors in Wk

are below 0.1 and in a0 below 7�

Initial u

angle

Initial

Wk

Calculated

Wk

Wk

error

Initial a0 Calculated a0 a0 error

0� 1.00 0.92 0.08 45� 52.0� 7.0�

0� 1.00 1.00 0.00 75� 75.1� 0.1�

30� 0.87 0.79 0.08 45� 48.8� 3.8�

30� 0.87 0.86 0.01 75� 69.0� 6.0�

60� 0.50 0.48 0.02 45� 44.7� 0.3�

60� 0.50 0.58 0.08 75� 72.7� 2.3�

90� 0.00 0.01 0.01 45� 44.1� 0.9�

90� 0.00 0.10 0.10 75� 75.7� 0.7�
data points independently collected by someone else (PDB).
This not only indicates that the graphical method with a limited
data set produces good results but also that user bias does not
seem to be a significant factor in the analysis.

6. Discussion and conclusions

In this paper we have shown that small-scale faults with
drag folds can be used to determine vorticity, initial fault an-
gle, and estimate of the minimum finite strain since first fault
nucleation. This is a useful addition to the structural geolo-
gist’s ‘‘toolbox’’ because relatively few methods exist to deter-
mine and quantify vorticity (Ghosh, 1987; Passchier and Urai,
1988; Wallis, 1992; Short and Johnson, 2006).

The initial fault angle (a0) can usually be estimated in the
field, by finding the steepest fault with the least offset and drag
fold bending. If this a0 is determined independently first, it can
of course be used in the subsequent determination of the angle
between flow apophyses (u), either when using the graphs
(Fig. 5 and Appendix), or when using the least-squares tech-
nique. In the latter case one can set a0 and only iterate over
u and Rf to find the best fit. However, without using a priori
knowledge of a0, the method appears robust and produced
estimated values close (<10�) to the true ones in all tests on
experiments and numerical simulations.

Fig. 11. Comparison of true (open dots) and estimated (closed dots) values of

kinematic vorticity number and initial fault angles, for eight numerical simu-

lations with BASIL.
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In the field study with 29 measured faults, simple shear de-
formation was obtained, which is consistent with the known
local deformation at Mas Rabassers de Dalt. Still, one cannot
determine the exact vorticity that the quartzite experienced
with only orientations of foliations, fold axes, and other struc-
tural elements. Local field observations made so far only in-
dicated a dominant simple shear component, leaving open
sub-simple shear with some shortening or stretching parallel
to the shear plane. With the new analysis of the faults with
drag folds the kinematic vorticity number is better constrained.

Table 2

Values of a, b and L/T measured from the Rabassers de Dalt outcrop

Locality Data group a0 b0 L/T

A 1 14 39 2.93

2 36 67 1.93

B 3 53 77 1.56

C 4 21 28 2.81

5 10 31 2.98

6 28 61 1.89

7 13 21 3.31

D 8 30 39 1.83

9 26 53 1.50

10 35 46 1.42

11 33 50 1.75

12 63 84 1.30

13 26 60 1.65

14 29 56 1.91

15 19 49 1.95

16 42 73 1.62

17 54 66 1.28

18 39 69 1.83

19 64 81 0.94

20 34 61 1.50

21 36 52 1.71

22 43 62 1.50

23 21 54 2.13

E 24 27 41 1.71

25 23 57 1.53

26 22 26 2.42

27 56 83 1.02

F 28 51 81 1.08

G 29 54 76 1.15

Localities are indicated on the outcrop map (Fig. 3).
In conclusion, we propose a new method to determine vor-
ticity, initial fault angle and finite strain using small-scale faults
with drag folds. Theory and validation tests on experiments and
numerical simulations show that the method is robust, provided
the following assumptions hold: (a) the structures nucleate at
different stages during deformation, and therefore record dif-
ferent amounts of strain; (b) the faults all nucleate in approxi-
mately the same orientation (a0); (c) the flow kinematics do not
change during deformation; (d) the structures are isolated to
avoid interference between adjacent structures; and (e) the
faults are discrete, so that the drag angle (b) can be determined
accurately. The last assumption means that ductile shear bands
(Fig. 1b) are not suitable for this method.

Although a least-squares best fit routine is preferred to ob-
tain the best estimate of kinematic vorticity number, initial
fault angle and minimum finite strain, charts can be used to
obtain a first estimate.

Fig. 13. Graph showing the stability of this analytical method using a different

number of groups of measurements. The solution becomes stable using less

than 10 groups of data.
Fig. 12. Curves of a, b and L/T for an angle between flow apophyses of 3� and an initial fault angle of 78�. The plotted data correspond to the measured parameters

at Mas Rabassers de Dalt.
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Appendix A. Charts to estimate initial fault angle (a0),
vorticity (u) and minimum finite strain (Rf)

To use these charts, measure the following parameters from
a number of fault systems, preferably at different stages of de-
velopment (Fig. A1):

� The angle between the fault and the foliation away from
the fault (a);
� The angle between the fault and the deflected foliation at
the fault (b);
� The ratio (L/T ) of the thickness of a layer away from the

fault (T ) and the thickness of the same layer parallel to the
fault and at the fault (L).

Each pair of graphs is for a certain vorticity, defined by the
angle between the flow apophyses (u) or the kinematic vortic-
ity number (Wk). Arrows in the graphs show a-b (left) and
L/T-b (right) paths as a function of increasing finite strain
and initial fault orientation (a0). Dashed lines are finite strain
contours at Rf ¼ 2, 4, 8, and 16.

Plot your measurements on a transparency, using the blank
pair of graphs provided (Fig. A2). Then overlay your plot on
the graphs (Figs. A3eA6) and find the vorticity where your
data most closely follow one single arrow on both graphs.
The arrow fitting your data points provides you with the start-
ing orientation of the faults. Ideally, each data point should
have the same finite strain in both graphs as well.
Fig. A2. Plot your data on a transparency using these blank charts.

Fig. A1. Definition of parameters.
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Figs. A3eA6. Curves of a and L/T as a function of b for different vorticities and starting orientations of the fault (a0). Insets show the Mohr-circle for stretch for an

Rf-value of 4. Dashed lines are finite strain contours at Rf ¼ 2, 4, 8, and 16.
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Figs. A3eA6 (continued).
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Figs. A3eA6 (continued).
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Figs. A3eA6 (continued).
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